Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On counting functions and slenderness of languages (1903.03504v1)

Published 8 Mar 2019 in cs.FL

Abstract: We study counting-regular languages -- these are languages $L$ for which there is a regular language $L'$ such that the number of strings of length $n$ in $L$ and $L'$ are the same for all $n$. We show that the languages accepted by unambiguous nondeterministic Turing machines with a one-way read-only input tape and a reversal-bounded worktape are counting-regular. Many one-way acceptors are a special case of this model, such as reversal-bounded deterministic pushdown automata, reversal-bounded deterministic queue automata, and many others, and therefore all languages accepted by these models are counting-regular. This result is the best possible in the sense that the claim does not hold for either $2$-ambiguous PDA's, unambiguous PDA's with no reversal-bound, and other models. We also study closure properties of counting-regular languages, and we study decidability problems in regards to counting-regularity. For example, it is shown that the counting-regularity of even some restricted subclasses of PDA's is undecidable. Lastly, $k$-slender languages -- where there are at most $k$ words of any length -- are also studied. Amongst other results, it is shown that it is decidable whether a language in any semilinear full trio is $k$-slender.

Citations (3)

Summary

We haven't generated a summary for this paper yet.