Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genetic Algorithm for a class of Knapsack Problems (1903.03494v1)

Published 15 Feb 2019 in cs.NE

Abstract: The 0/1 knapsack problem is weakly NP-hard in that there exist pseudo-polynomial time algorithms based on dynamic programming that can solve it exactly. There are also the core branch and bound algorithms that can solve large randomly generated instances in a very short amount of time. However, as the correlation between the variables is increased, the difficulty of the problem increases. Recently a new class of knapsack problems was introduced by D. Pisinger called the spanner knapsack instances. These instances are unsolvable by the core branch and bound instances; and as the size of the coefficients and the capacity constraint increase, the spanner instances are unsolvable even by dynamic programming based algorithms. In this paper, a genetic algorithm is presented for spanner knapsack instances. Results show that the algorithm is capable of delivering optimum solutions within a reasonable amount of computational duration.

Citations (5)

Summary

We haven't generated a summary for this paper yet.