Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Technique for Rejecting Non-Aircraft Artefacts in Above Horizon Vision-Based Aircraft Detection (1903.03270v3)

Published 8 Mar 2019 in cs.SY

Abstract: Unmanned aerial vehicle (UAV) operations are steadily expanding into many important applications. A key technology for better enabling their commercial use is an onboard sense and avoid (SAA) technology which can detect potential mid-air collision threats in the same manner expected from a human pilot. Ideally, aircraft should be detected as early as possible whilst maintaining a low false alarm rate, however, textured clouds and other unstructured terrain make this trade-off a challenge. In this paper we present a new technique for the modelling and detection of aircraft above the horizon that is able to penalise non-aircraft artefacts (such as textured clouds and other unstructured terrain). We evaluate the performance of our proposed system on flight data of a Cessna 172 on a near collision course encounter with a ScanEagle UAV data collection aircraft. By penalising non-aircraft artefacts we are able to demonstrate, for a zero false alarm rate, a mean detection range of 2445m corresponding to an improvement in detection ranges by 9.8% (218m).

Citations (1)

Summary

We haven't generated a summary for this paper yet.