Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nowcasting Recessions using the SVM Machine Learning Algorithm (1903.03202v2)

Published 17 Feb 2019 in q-fin.GN, cs.LG, econ.GN, q-fin.EC, stat.AP, and stat.ML

Abstract: We introduce a novel application of Support Vector Machines (SVM), an important Machine Learning algorithm, to determine the beginning and end of recessions in real time. Nowcasting, "forecasting" a condition about the present time because the full information about it is not available until later, is key for recessions, which are only determined months after the fact. We show that SVM has excellent predictive performance for this task, and we provide implementation details to facilitate its use in similar problems in economics and finance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.