Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theta bases and log Gromov-Witten invariants of cluster varieties (1903.03042v3)

Published 7 Mar 2019 in math.AG

Abstract: Using heuristics from mirror symmetry, combinations of Gross, Hacking, Keel, Kontsevich, and Siebert have given combinatorial constructions of canonical bases of "theta functions" on the coordinate rings of various log Calabi-Yau spaces, including cluster varieties. We prove that the theta bases for cluster varieties are determined by certain descendant log Gromov-Witten invariants of the symplectic leaves of the mirror/Langlands dual cluster variety, as predicted in the Frobenius structure conjecture of Gross-Hacking-Keel. We further show that these Gromov-Witten counts are often given by naive counts of rational curves satisfying certain geometric conditions. As a key new technical tool, we introduce the notion of "contractible" tropical curves when showing that the relevant log curves are torically transverse.

Summary

We haven't generated a summary for this paper yet.