Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

Attack Type Agnostic Perceptual Enhancement of Adversarial Images (1903.03029v3)

Published 7 Mar 2019 in cs.CV

Abstract: Adversarial images are samples that are intentionally modified to deceive machine learning systems. They are widely used in applications such as CAPTHAs to help distinguish legitimate human users from bots. However, the noise introduced during the adversarial image generation process degrades the perceptual quality and introduces artificial colours; making it also difficult for humans to classify images and recognise objects. In this letter, we propose a method to enhance the perceptual quality of these adversarial images. The proposed method is attack type agnostic and could be used in association with the existing attacks in the literature. Our experiments show that the generated adversarial images have lower Euclidean distance values while maintaining the same adversarial attack performance. Distances are reduced by 5.88% to 41.27% with an average reduction of 22% over the different attack and network types.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.