Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autoregressive Convolutional Recurrent Neural Network for Univariate and Multivariate Time Series Prediction (1903.02540v1)

Published 6 Mar 2019 in cs.LG and stat.ML

Abstract: Time Series forecasting (univariate and multivariate) is a problem of high complexity due the different patterns that have to be detected in the input, ranging from high to low frequencies ones. In this paper we propose a new model for timeseries prediction that utilizes convolutional layers for feature extraction, a recurrent encoder and a linear autoregressive component. We motivate the model and we test and compare it against a baseline of widely used existing architectures for univariate and multivariate timeseries. The proposed model appears to outperform the baselines in almost every case of the multivariate timeseries datasets, in some cases even with 50% improvement which shows the strengths of such a hybrid architecture in complex timeseries.

Citations (8)

Summary

We haven't generated a summary for this paper yet.