Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids (1903.01927v1)

Published 5 Mar 2019 in math.ST, cs.CR, and stat.TH

Abstract: We address the problem of non-parametric density estimation under the additional constraint that only privatised data are allowed to be published and available for inference. For this purpose, we adopt a recent generalisation of classical minimax theory to the framework of local $\alpha$-differential privacy and provide a lower bound on the rate of convergence over Besov spaces $Bs_{pq}$ under mean integrated $\mathbb Lr$-risk. This lower bound is deteriorated compared to the standard setup without privacy, and reveals a twofold elbow effect. In order to fulfil the privacy requirement, we suggest adding suitably scaled Laplace noise to empirical wavelet coefficients. Upper bounds within (at most) a logarithmic factor are derived under the assumption that $\alpha$ stays bounded as $n$ increases: A linear but non-adaptive wavelet estimator is shown to attain the lower bound whenever $p \geq r$ but provides a slower rate of convergence otherwise. An adaptive non-linear wavelet estimator with appropriately chosen smoothing parameters and thresholding is shown to attain the lower bound within a logarithmic factor for all cases.

Citations (43)

Summary

We haven't generated a summary for this paper yet.