Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Copying Machine Learning Classifiers (1903.01879v2)

Published 5 Mar 2019 in cs.LG and stat.ML

Abstract: We study model-agnostic copies of machine learning classifiers. We develop the theory behind the problem of copying, highlighting its differences with that of learning, and propose a framework to copy the functionality of any classifier using no prior knowledge of its parameters or training data distribution. We identify the different sources of loss and provide guidelines on how best to generate synthetic sets for the copying process. We further introduce a set of metrics to evaluate copies in practice. We validate our framework through extensive experiments using data from a series of well-known problems. We demonstrate the value of copies in use cases where desiderata such as interpretability, fairness or productivization constrains need to be addressed. Results show that copies can be exploited to enhance existing solutions and improve them adding new features and characteristics.

Citations (18)

Summary

We haven't generated a summary for this paper yet.