Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Efficient Approach with Data-Adaptive Capability for OMP-based Sparse Subspace Clustering (1903.01734v2)

Published 5 Mar 2019 in cs.LG and stat.ML

Abstract: Orthogonal Matching Pursuit (OMP) plays an important role in data science and its applications such as sparse subspace clustering and image processing. However, the existing OMP-based approaches lack of data adaptiveness so that the data cannot be represented well enough and may lose the accuracy. This paper proposes a novel approach to enhance the data-adaptive capability for OMP-based sparse subspace clustering. In our method a parameter selection process is developed to adjust the parameters based on the data distribution for information representation. Our theoretical analysis indicates that the parameter selection process can efficiently coordinate with any OMP-based methods to improve the clustering performance. Also a new Self-Expressive-Affinity (SEA) ratio metric is defined to measure the sparse representation conversion efficiency for spectral clustering to obtain data segmentations. Our experiments show that proposed approach can achieve better performances compared with other OMP-based sparse subspace clustering algorithms in terms of clustering accuracy, SEA ratio and representation quality, also keep the time efficiency and anti-noise ability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.