Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Making the Dynamic Time Warping Distance Warping-Invariant (1903.01454v2)

Published 4 Mar 2019 in cs.LG and stat.ML

Abstract: The literature postulates that the dynamic time warping (dtw) distance can cope with temporal variations but stores and processes time series in a form as if the dtw-distance cannot cope with such variations. To address this inconsistency, we first show that the dtw-distance is not warping-invariant. The lack of warping-invariance contributes to the inconsistency mentioned above and to a strange behavior. To eliminate these peculiarities, we convert the dtw-distance to a warping-invariant semi-metric, called time-warp-invariant (twi) distance. Empirical results suggest that the error rates of the twi and dtw nearest-neighbor classifier are practically equivalent in a Bayesian sense. However, the twi-distance requires less storage and computation time than the dtw-distance for a broad range of problems. These results challenge the current practice of applying the dtw-distance in nearest-neighbor classification and suggest the proposed twi-distance as a more efficient and consistent option.

Citations (10)

Summary

We haven't generated a summary for this paper yet.