Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Augmentation for Drum Transcription with Convolutional Neural Networks (1903.01416v1)

Published 4 Mar 2019 in cs.SD and eess.AS

Abstract: A recurrent issue in deep learning is the scarcity of data, in particular precisely annotated data. Few publicly available databases are correctly annotated and generating correct labels is very time consuming. The present article investigates into data augmentation strategies for Neural Networks training, particularly for tasks related to drum transcription. These tasks need very precise annotations. This article investigates state-of-the-art sound transformation algorithms for remixing noise and sinusoidal parts, remixing attacks, transposing with and without time compensation and compares them to basic regularization methods such as using dropout and additive Gaussian noise. And it shows how a drum transcription algorithm based on CNN benefits from the proposed data augmentation strategy.

Citations (10)

Summary

We haven't generated a summary for this paper yet.