Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantization of continuum Kac-Moody algebras (1903.01413v3)

Published 4 Mar 2019 in math.QA and math.RT

Abstract: Continuum Kac-Moody algebras have been recently introduced by the authors and O. Schiffmann. These are Lie algebras governed by a continuum root system, which can be realized as uncountable colimits of Borcherds-Kac-Moody algebras. In this paper, we prove that any continuum Kac-Moody algebra is canonically endowed with a non-degenerate invariant bilinear form. The positive and negative Borel subalgebras form a Manin triple with respect to this pairing, inducing on the continuum Kac-Moody algebra a topological quasi-triangular Lie bialgebra structure. We then construct an explicit quantization, which we refer to as a continuum quantum group, and we show that the latter is similarly realized as an uncountable colimit of Drinfeld-Jimbo quantum groups.

Summary

We haven't generated a summary for this paper yet.