Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Online Learning with Probabilistic Graph Feedback (1903.01083v2)

Published 4 Mar 2019 in cs.LG and stat.ML

Abstract: We consider a problem of stochastic online learning with general probabilistic graph feedback, where each directed edge in the feedback graph has probability $p_{ij}$. Two cases are covered. (a) The one-step case, where after playing arm $i$ the learner observes a sample reward feedback of arm $j$ with independent probability $p_{ij}$. (b) The cascade case where after playing arm $i$ the learner observes feedback of all arms $j$ in a probabilistic cascade starting from $i$ -- for each $(i,j)$ with probability $p_{ij}$, if arm $i$ is played or observed, then a reward sample of arm $j$ would be observed with independent probability $p_{ij}$. Previous works mainly focus on deterministic graphs which corresponds to one-step case with $p_{ij} \in {0,1}$, an adversarial sequence of graphs with certain topology guarantees, or a specific type of random graphs. We analyze the asymptotic lower bounds and design algorithms in both cases. The regret upper bounds of the algorithms match the lower bounds with high probability.

Citations (17)

Summary

We haven't generated a summary for this paper yet.