Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deterministic Analysis of Weighted BPDN With Partially Known Support Information (1903.00902v1)

Published 3 Mar 2019 in cs.IT and math.IT

Abstract: In this paper, with the aid of the powerful Restricted Isometry Constant (RIC), a deterministic (or say non-stochastic) analysis, which includes a series of sufficient conditions (related to the RIC order) and their resultant error estimates, is established for the weighted Basis Pursuit De-Noising (BPDN) to guarantee the robust signal recovery when Partially Known Support Information (PKSI) of the signal is available. Specifically, the obtained conditions extend nontrivially the ones induced recently for the traditional constrained weighted $\ell_{1}$-minimization model to those for its unconstrained counterpart, i.e., the weighted BPDN. The obtained error estimates are also comparable to the analogous ones induced previously for the robust recovery of the signals with PKSI from some constrained models. Moreover, these results to some degree may well complement the recent investigation of the weighted BPDN which is based on the stochastic analysis.

Summary

We haven't generated a summary for this paper yet.