Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-time blow-up in a quasilinear degenerate chemotaxis system with flux limitation (1903.00125v1)

Published 1 Mar 2019 in math.AP

Abstract: This paper deals with the quasilinear degenerate chemotaxis system with flux limitation \begin{align*} \begin{cases} u_t = \nabla\cdot\left(\dfrac{up \nabla u}{\sqrt{u2 + |\nabla u|2}} \right) -\chi \nabla\cdot\left( \dfrac{uq\nabla v}{\sqrt{1 + |\nabla v|2}}\right), &x\in \Omega,\ t>0, \[1mm] 0 = \Delta v - \mu + u, &x\in \Omega,\ t>0, \end{cases} \end{align*} where $\Omega := B_R(0) \subset \mathbb{R}n$ ($n \in \mathbb{N}$) is a ball with some $R>0$, and $\chi >0$, $p,q\geq1$, $\mu := \frac 1{|\Omega|} \int_\Omega u_0$ and $u_0$ is an initial data of an unknown function $u$. Bellomo--Winkler (Trans.\ Amer.\ Math.\ Soc.\ Ser.\ B;2017;4;31--67) established existence of an initial data such that the corresponding solution blows up in finite time when $p=q=1$. This paper gives existence of blow-up solutions under some condition for $\chi$ and $u_0$ when $1\leq p\leq q$.

Summary

We haven't generated a summary for this paper yet.