Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Fraction, Restriction and Range Categories from Non-Monic Classes of Morphisms (1903.00081v2)

Published 28 Feb 2019 in math.CT

Abstract: For a composition-closed and pullback-stable class S of morphisms in a category C containing all isomorphisms, we form the category Span(C,S) of S-spans (s,f) in C with first "leg" s lying in S, and give an alternative construction of its quotient category C[S{-1}] of S-fractions. Instead of trying to turn S-morphisms "directly" into isomorphisms, we turn them separately into retractions and into sections in a universal manner, thus obtaining the quotient categories Retr( C,S) and Sect(C,S). The fraction category C[S{-1}] is their largest joint quotient category. Without confining S to be a class of monomorphisms of C, we show that Sect(C,S) admits a quotient category, Par(C,S), whose name is justified by two facts. On one hand, for S a class of monomorphisms in C, it returns the category of S-spans in C, also called S-partial maps in this case; on the other hand, we prove that Par(C,S) is a split restriction category (in the sense of Cockett and Lack). A further quotient construction produces even a range category (in the sense of Cockett, Guo and Hofstra), RaPar(C,S), which is still large enough to admit C[S{-1}] as its quotient. Both, Par and RaPar, are the left adjoints of global 2-adjunctions. When restricting these to their "fixed objects", one obtains precisely the 2-equivalences by which their name givers characterized restriction and range categories. Hence, both Par(C,S)$ and RaPar(C,S may be naturally presented as Par(D,T)$ and RaPa(D,T), respectively, where now T is a class of monomorphisms in D. In summary, while there is no {\em a priori} need for the exclusive consideration of classes of monomorphisms, one may resort to them naturally

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.