Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Approximation Algorithm for Maximin Shares (1903.00029v3)

Published 28 Feb 2019 in cs.GT

Abstract: Fair division is a fundamental problem in various multi-agent settings, where the goal is to divide a set of resources among agents in a fair manner. We study the case where m indivisible items need to be divided among n agents with additive valuations using the popular fairness notion of maximin share (MMS). An MMS allocation provides each agent a bundle worth at least her maximin share. While it is known that such an allocation need not exist, a series of work provided approximation algorithms for a 2/3-MMS allocation in which each agent receives a bundle worth at least 2/3 times her maximin share. More recently, Ghodsi et al. [EC'2018] showed the existence of a 3/4-MMS allocation and a PTAS to find a (3/4-\epsilon)-MMS allocation for an \epsilon > 0. Most of the previous works utilize intricate algorithms and require agents' approximate MMS values, which are computationally expensive to obtain. In this paper, we develop a new approach that gives a simple algorithm for showing the existence of a 3/4-MMS allocation. Furthermore, our approach is powerful enough to be easily extended in two directions: First, we get a strongly polynomial-time algorithm to find a 3/4-MMS allocation, where we do not need to approximate the MMS values at all. Second, we show that there always exists a (3/4 + 1/(12n))-MMS allocation, improving the best previous factor. This improves the approximation guarantee, most notably for small n. We note that 3/4 was the best factor known for n> 4.

Citations (119)

Summary

We haven't generated a summary for this paper yet.