Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning partially ranked data based on graph regularization (1902.10963v1)

Published 28 Feb 2019 in stat.ME and stat.ML

Abstract: Ranked data appear in many different applications, including voting and consumer surveys. There often exhibits a situation in which data are partially ranked. Partially ranked data is thought of as missing data. This paper addresses parameter estimation for partially ranked data under a (possibly) non-ignorable missing mechanism. We propose estimators for both complete rankings and missing mechanisms together with a simple estimation procedure. Our estimation procedure leverages a graph regularization in conjunction with the Expectation-Maximization algorithm. Our estimation procedure is theoretically guaranteed to have the convergence properties. We reduce a modeling bias by allowing a non-ignorable missing mechanism. In addition, we avoid the inherent complexity within a non-ignorable missing mechanism by introducing a graph regularization. The experimental results demonstrate that the proposed estimators work well under non-ignorable missing mechanisms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.