Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AutoGAN-based Dimension Reduction for Privacy Preservation (1902.10799v2)

Published 27 Feb 2019 in cs.CR

Abstract: Protecting sensitive information against data exploiting attacks is an emerging research area in data mining. Over the past, several different methods have been introduced to protect individual privacy from such attacks while maximizing data-utility of the application. However, these existing techniques are not sufficient to effectively protect data owner privacy, especially in the scenarios that utilize visualizable data (e.g. images, videos) or the applications that require heavy computations for implementation. To address these problems, we propose a new dimension reduction-based method for privacy preservation. Our method generates dimension-reduced data for performing machine learning tasks and prevents a strong adversary from reconstructing the original data. We first introduce a theoretical approach to evaluate dimension reduction-based privacy preserving mechanisms, then propose a non-linear dimension reduction framework motivated by state-of-the-art neural network structures for privacy preservation. We conducted experiments over three different face image datasets (AT&T, YaleB, and CelebA), and the results show that when the number of dimensions is reduced to seven, we can achieve the accuracies of 79%, 80%, and 73% respectively and the reconstructed images are not recognizable to naked human eyes.

Citations (29)

Summary

We haven't generated a summary for this paper yet.