Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Deep Multi-modal Fusion for Image Privacy Prediction (1902.10796v2)

Published 27 Feb 2019 in cs.CV and cs.CY

Abstract: With millions of images that are shared online on social networking sites, effective methods for image privacy prediction are highly needed. In this paper, we propose an approach for fusing object, scene context, and image tags modalities derived from convolutional neural networks for accurately predicting the privacy of images shared online. Specifically, our approach identifies the set of most competent modalities on the fly, according to each new target image whose privacy has to be predicted. The approach considers three stages to predict the privacy of a target image, wherein we first identify the neighborhood images that are visually similar and/or have similar sensitive content as the target image. Then, we estimate the competence of the modalities based on the neighborhood images. Finally, we fuse the decisions of the most competent modalities and predict the privacy label for the target image. Experimental results show that our approach predicts the sensitive (or private) content more accurately than the models trained on individual modalities (object, scene, and tags) and prior privacy prediction works. Also, our approach outperforms strong baselines, that train meta-classifiers to obtain an optimal combination of modalities.

Citations (31)

Summary

We haven't generated a summary for this paper yet.