Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials (1902.09814v1)

Published 26 Feb 2019 in math.NT, math.AG, math.NA, and math.PR

Abstract: The class B of lacunary polynomials f(x) := -1 + x + xn + x{m_1} + x{m_2} + ... + x{m_s}, where s >= 0, m_1 - n >= n - 1, m_{q+1} - m_{q} >= n - 1 for 1 <= q < s, n >= 3 is studied. A polynomial having its coefficients in {0, 1} except its constant coefficient equal to -1 is called an almost Newman polynomial. A general theorem of factorization of the almost Newman polynomials of the class B is obtained. Such polynomials possess lenticular roots in the open unit disk off the unit circle in the small angular sector \pi/18 <= arg z <= \pi/18 and their nonreciprocal parts are always irreducible. The existence of lenticuli of roots is a peculiarity of the class B. By comparison with the Odlyzko - Poonen Conjecture and its variant Conjecture, an `Asymptotic Reducibility Conjecture' is formulated aiming at establishing the proportion of irreducible polynomials in this class. This proportion is conjectured to be 3/4 and estimated using Monte-Carlo methods. The numerical approximate value ~ 0.756 is obtained. The results extend those on trinomials (Selmer) and quadrinomials (Ljunggren, Mills, Finch and Jones).

Summary

We haven't generated a summary for this paper yet.