Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 234 tok/s Pro
2000 character limit reached

RTNI - A symbolic integrator for Haar-random tensor networks (1902.08539v1)

Published 22 Feb 2019 in quant-ph, hep-th, math-ph, math.MP, and math.PR

Abstract: We provide a computer algebra package called Random Tensor Network Integrator (RTNI). It allows to compute averages of tensor networks containing multiple Haar-distributed random unitary matrices and deterministic symbolic tensors. Such tensor networks are represented as multigraphs, with vertices corresponding to tensors or random unitaries and edges corresponding to tensor contractions. Input and output spaces of random unitaries may be subdivided into arbitrary tensor factors, with dimensions treated symbolically. The algorithm implements the graphical Weingarten calculus and produces a weighted sum of tensor networks representing the average over the unitary group. We illustrate the use of this algorithmic tool on some examples from quantum information theory, including entropy calculations for random tensor network states as considered in toy models for holographic duality. Mathematica and Python implementations are supplied.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.