2000 character limit reached
Random finite-difference discretizations of the Ambrosio-Tortorelli functional with optimal mesh size (1902.08437v2)
Published 22 Feb 2019 in math.AP, cs.NA, and math.NA
Abstract: We propose and analyze a finite-difference discretization of the Ambrosio-Tortorelli functional. It is known that if the discretization is made with respect to an underlying periodic lattice of spacing $\delta$, the discretized functionals $\Gamma$-converge to the Mumford-Shah functional only if $\delta\ll\varepsilon$, $\varepsilon$ being the elliptic approximation parameter of the Ambrosio-Tortorelli functional. Discretizing with respect to stationary, ergodic and isotropic random lattices we prove this $\Gamma$-convergence result also for $\delta\sim\varepsilon$, a regime at which the discretization with respect to a periodic lattice converges instead to an anisotropic version of the Mumford-Shah functional.