Papers
Topics
Authors
Recent
2000 character limit reached

Approximate selective inference via maximum likelihood

Published 21 Feb 2019 in stat.ME | (1902.07884v6)

Abstract: Several strategies have been developed recently to ensure valid inference after model selection; some of these are easy to compute, while others fare better in terms of inferential power. In this paper, we consider a selective inference framework for Gaussian data. We propose a new method for inference through approximate maximum likelihood estimation. Our goal is to: (i) achieve better inferential power with the aid of randomization, (ii) bypass expensive MCMC sampling from exact conditional distributions that are hard to evaluate in closed forms. We construct approximate inference, e.g., p-values, confidence intervals etc., by solving a fairly simple, convex optimization problem. We illustrate the potential of our method across wide-ranging values of signal-to-noise ratio in simulations. On a cancer gene expression data set we find that our method improves upon the inferential power of some commonly used strategies for selective inference.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.