Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal variance decompositions for institutional comparisons in healthcare (1902.07692v2)

Published 20 Feb 2019 in stat.ME

Abstract: There is increasing interest in comparing institutions delivering healthcare in terms of disease-specific quality indicators (QIs) that capture processes or outcomes showing variations in the care provided. Such comparisons can be framed in terms of causal models, where adjusting for patient case-mix is analogous to controlling for confounding, and exposure is being treated in a given hospital, for instance. Our goal here is to help identifying good QIs rather than comparing hospitals in terms of an already chosen QI, and so we focus on the presence and magnitude of overall variation in care between the hospitals rather than the pairwise differences between any two hospitals. We consider how the observed variation in care received at patient level can be decomposed into that causally explained by the hospital performance adjusting for the case-mix, the case-mix itself, and residual variation. For this purpose, we derive a three-way variance decomposition, with particular attention to its causal interpretation in terms of potential outcome variables. We propose model-based estimators for the decomposition, accommodating different link functions and either fixed or random effect models. We evaluate their performance in a simulation study and demonstrate their use in a real data application.

Summary

We haven't generated a summary for this paper yet.