Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Detecting and Preventing Jamming Attacks with Machine Learning in Optical Networks (1902.07537v3)

Published 20 Feb 2019 in cs.NI

Abstract: Optical networks are prone to power jamming attacks intending service disruption. This paper presents a Machine Learning (ML) framework for detection and prevention of jamming attacks in optical networks. We evaluate various ML classifiers for detecting out-of-band jamming attacks with varying intensities. Numerical results show that artificial neural network is the fastest (106 detections per second) for inference and most accurate (~ 100 %) in detecting power jamming attacks as well as identifying the optical channels attacked. We also discuss and study a novel prevention mechanism when the system is under active jamming attacks. For this scenario, we propose a novel resource reallocation scheme that utilizes the statistical information of attack detection accuracy to lower the probability of successful jamming of lightpaths while minimizing lightpaths' reallocations. Simulation results show that the likelihood of jamming a lightpath reduces with increasing detection accuracy, and localization reduces the number of reallocations required

Citations (21)

Summary

We haven't generated a summary for this paper yet.