Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sums of integers and sums of their squares (1902.07109v2)

Published 19 Feb 2019 in math.NT

Abstract: Suppose a positive integer $n$ is written as a sum of squares of $m$ integers. What can one say about the value $T$ of the sum of these $m$ integers itself? Which $T$ can be obtained if one considers all possible representations of $n$ as a sum of squares of $m$ integers? Denoting this set of all possible $T$ by $\mathscr{S}_m(n)$, Goldmakher and Pollack have given a simple characterization of $\mathscr{S}_4(n)$ using elementary arguments. Their result can be reinterpreted in terms of Mordell's theory of representations of binary integral quadratic forms as sums of squares of integral linear forms. Based on this approach, we characterize $\mathscr{S}_m(n)$ for all $m\leq 11$ and provide a few partial results for arbitrary $m$. We also show how Mordell's results can be used to study variations of the original problem where the sum of the integers is replaced by a linear form in these integers. In this way, we recover and generalize earlier results by Z.W. Sun et. al..

Summary

We haven't generated a summary for this paper yet.