Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Conditional Gradient++ (1902.06992v4)

Published 19 Feb 2019 in math.OC and cs.LG

Abstract: In this paper, we consider the general non-oblivious stochastic optimization where the underlying stochasticity may change during the optimization procedure and depends on the point at which the function is evaluated. We develop Stochastic Frank-Wolfe++ ($\text{SFW}{++} $), an efficient variant of the conditional gradient method for minimizing a smooth non-convex function subject to a convex body constraint. We show that $\text{SFW}{++} $ converges to an $\epsilon$-first order stationary point by using $O(1/\epsilon3)$ stochastic gradients. Once further structures are present, $\text{SFW}{++}$'s theoretical guarantees, in terms of the convergence rate and quality of its solution, improve. In particular, for minimizing a convex function, $\text{SFW}{++} $ achieves an $\epsilon$-approximate optimum while using $O(1/\epsilon2)$ stochastic gradients. It is known that this rate is optimal in terms of stochastic gradient evaluations. Similarly, for maximizing a monotone continuous DR-submodular function, a slightly different form of $\text{SFW}{++} $, called Stochastic Continuous Greedy++ ($\text{SCG}{++} $), achieves a tight $[(1-1/e)\text{OPT} -\epsilon]$ solution while using $O(1/\epsilon2)$ stochastic gradients. Through an information theoretic argument, we also prove that $\text{SCG}{++} $'s convergence rate is optimal. Finally, for maximizing a non-monotone continuous DR-submodular function, we can achieve a $[(1/e)\text{OPT} -\epsilon]$ solution by using $O(1/\epsilon2)$ stochastic gradients. We should highlight that our results and our novel variance reduction technique trivially extend to the standard and easier oblivious stochastic optimization settings for (non-)covex and continuous submodular settings.

Citations (21)

Summary

We haven't generated a summary for this paper yet.