Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interlaced Greedy Algorithm for Maximization of Submodular Functions in Nearly Linear Time (1902.06179v3)

Published 17 Feb 2019 in cs.DS

Abstract: A deterministic approximation algorithm is presented for the maximization of non-monotone submodular functions over a ground set of size $n$ subject to cardinality constraint $k$; the algorithm is based upon the idea of interlacing two greedy procedures. The algorithm uses interlaced, thresholded greedy procedures to obtain tight ratio $1/4 - \epsilon$ in $O \left( \frac{n}{\epsilon} \log \left( \frac{k}{\epsilon} \right) \right)$ queries of the objective function, which improves upon both the ratio and the quadratic time complexity of the previously fastest deterministic algorithm for this problem. The algorithm is validated in the context of two applications of non-monotone submodular maximization, on which it outperforms the fastest deterministic and randomized algorithms in prior literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.