Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable reservoir computing (1902.06094v2)

Published 16 Feb 2019 in cs.NE, cs.LG, and cs.SY

Abstract: Much effort has been devoted in the last two decades to characterize the situations in which a reservoir computing system exhibits the so-called echo state (ESP) and fading memory (FMP) properties. These important features amount, in mathematical terms, to the existence and continuity of global reservoir system solutions. That research is complemented in this paper with the characterization of the differentiability of reservoir filters for very general classes of discrete-time deterministic inputs. This constitutes a novel strong contribution to the long line of research on the ESP and the FMP and, in particular, links to existing research on the input-dependence of the ESP. Differentiability has been shown in the literature to be a key feature in the learning of attractors of chaotic dynamical systems. A Volterra-type series representation for reservoir filters with semi-infinite discrete-time inputs is constructed in the analytic case using Taylor's theorem and corresponding approximation bounds are provided. Finally, it is shown as a corollary of these results that any fading memory filter can be uniformly approximated by a finite Volterra series with finite memory.

Citations (37)

Summary

We haven't generated a summary for this paper yet.