Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DC-AL GAN: Pseudoprogression and True Tumor Progression of Glioblastoma Multiform Image Classification Based on DCGAN and AlexNet (1902.06085v4)

Published 16 Feb 2019 in cs.CV and eess.IV

Abstract: Pseudoprogression (PsP) occurs in 20-30% of patients with glioblastoma multiforme (GBM) after receiving the standard treatment. In the course of post-treatment magnetic resonance imaging (MRI), PsP exhibits similarities in shape and intensity to the true tumor progression (TTP) of GBM. So, these similarities pose challenges on the differentiation of these types of progression and hence the selection of the appropriate clinical treatment strategy. In this paper, we introduce DC-AL GAN, a novel feature learning method based on deep convolutional generative adversarial network (DCGAN) and AlexNet, to discriminate between PsP and TTP in MRI images. Due to the adversarial relationship between the generator and the discriminator of DCGAN, high-level discriminative features of PsP and TTP can be derived for the discriminator with AlexNet. Also, a feature fusion scheme is used to combine higher-layer features with lower-layer information, leading to more powerful features that are used for effectively discriminating between PsP and TTP. The experimental results show that DC-AL GAN achieves desirable PsP and TTP classification performance that is superior to other state-of-the-art methods.

Citations (49)

Summary

We haven't generated a summary for this paper yet.