Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective equidistribution for multiplicative Diophantine approximation on lines (1902.06081v2)

Published 16 Feb 2019 in math.DS and math.NT

Abstract: Given any line in the plane, we strengthen the Littlewood conjecture by two logarithms for almost every point on the line, thereby generalising the fibre result of Beresnevich, Haynes, and Velani. To achieve this, we prove an effective asymptotic equidistribution result for one-parameter unipotent orbits in $\mathrm{SL}(3, \mathbb{R})/\mathrm{SL}(3,\mathbb{Z})$. We also provide a complementary convergence statement, by developing the structural theory of dual Bohr sets: at the cost of a slightly stronger Diophantine assumption, this sharpens a result of Kleinbock's from 2003. Finally, we refine the theory of logarithm laws in homogeneous spaces.

Summary

We haven't generated a summary for this paper yet.