Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$\mathbb{Z}_2 \times \mathbb{Z}_2$ generalizations of infinite dimensional Lie superalgebra of conformal type with complete classification of central extensions (1902.05741v2)

Published 15 Feb 2019 in math-ph, math.MP, and math.RT

Abstract: We introduce a class of novel $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded color superalgebras of infinite dimension. It is done by realizing each member of the class in the universal enveloping algebra of a Lie superalgebra which is a module extension of the Virasoro algebra. Then the complete classification of central extensions of the $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded color superalgebras is presented. It turns out that infinitely many members of the class have non-trivial extensions. We also demonstrate that the color superalgebras (with and without central extensions) have adjoint and superadjoint operations.

Summary

We haven't generated a summary for this paper yet.