Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Parameterized Fine-Grained Reductions (1902.05529v1)

Published 14 Feb 2019 in cs.CC

Abstract: During recent years the field of fine-grained complexity has bloomed to produce a plethora of results, with both applied and theoretical impact on the computer science community. The cornerstone of the framework is the notion of fine-grained reductions, which correlate the exact complexities of problems such that improvements in their running times or hardness results are carried over. We provide a parameterized viewpoint of these reductions (PFGR) in order to further analyze the structure of improvable problems and set the foundations of a unified methodology for extending algorithmic results. In this context, we define a class of problems (FPI) that admit fixed-parameter improvements on their running time. As an application of this framework we present a truly sub-quadratic fixed-parameter algorithm for the orthogonal vectors problem. Finally, we provide a circuit characterization for FPI to further solidify the notion of improvement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.