Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Generative Deep Learning for Molecular Design (1902.05148v1)

Published 11 Feb 2019 in cs.LG

Abstract: Probabilistic generative deep learning for molecular design involves the discovery and design of new molecules and analysis of their structure, properties and activities by probabilistic generative models using the deep learning approach. It leverages the existing huge databases and publications of experimental results, and quantum-mechanical calculations, to learn and explore molecular structure, properties and activities. We discuss the major components of probabilistic generative deep learning for molecular design, which include molecular structure, molecular representations, deep generative models, molecular latent representations and latent space, molecular structure-property and structure-activity relationships, molecular similarity and molecular design. We highlight significant recent work using or applicable to this new approach.

Citations (7)

Summary

We haven't generated a summary for this paper yet.