Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Convergence of Extended Variational Inference for Non-Gaussian Statistical Models (1902.05068v2)

Published 13 Feb 2019 in stat.ML, cs.CV, and cs.LG

Abstract: Variational inference (VI) is a widely used framework in Bayesian estimation. For most of the non-Gaussian statistical models, it is infeasible to find an analytically tractable solution to estimate the posterior distributions of the parameters. Recently, an improved framework, namely the extended variational inference (EVI), has been introduced and applied to derive analytically tractable solution by employing lower-bound approximation to the variational objective function. Two conditions required for EVI implementation, namely the weak condition and the strong condition, are discussed and compared in this paper. In practical implementation, the convergence of the EVI depends on the selection of the lower-bound approximation, no matter with the weak condition or the strong condition. In general, two approximation strategies, the single lower-bound (SLB) approximation and the multiple lower-bounds (MLB) approximation, can be applied to carry out the lower-bound approximation. To clarify the differences between the SLB and the MLB, we will also discuss the convergence properties of the aforementioned two approximations. Extensive comparisons are made based on some existing EVI-based non-Gaussian statistical models. Theoretical analysis are conducted to demonstrate the differences between the weak and the strong conditions. Qualitative and quantitative experimental results are presented to show the advantages of the SLB approximation.

Summary

We haven't generated a summary for this paper yet.