Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Screen (1902.04741v3)

Published 13 Feb 2019 in cs.LG, cs.DS, and stat.ML

Abstract: Imagine a large firm with multiple departments that plans a large recruitment. Candidates arrive one-by-one, and for each candidate the firm decides, based on her data (CV, skills, experience, etc), whether to summon her for an interview. The firm wants to recruit the best candidates while minimizing the number of interviews. We model such scenarios as an assignment problem between items (candidates) and categories (departments): the items arrive one-by-one in an online manner, and upon processing each item the algorithm decides, based on its value and the categories it can be matched with, whether to retain or discard it (this decision is irrevocable). The goal is to retain as few items as possible while guaranteeing that the set of retained items contains an optimal matching. We consider two variants of this problem: (i) in the first variant it is assumed that the $n$ items are drawn independently from an unknown distribution $D$. (ii) In the second variant it is assumed that before the process starts, the algorithm has an access to a training set of $n$ items drawn independently from the same unknown distribution (e.g.\ data of candidates from previous recruitment seasons). We give tight bounds on the minimum possible number of retained items in each of these variants. These results demonstrate that one can retain exponentially less items in the second variant (with the training set).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Alon Cohen (24 papers)
  2. Avinatan Hassidim (66 papers)
  3. Haim Kaplan (111 papers)
  4. Yishay Mansour (158 papers)
  5. Shay Moran (102 papers)

Summary

We haven't generated a summary for this paper yet.