Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Authenticate with Deep Multibiometric Hashing and Neural Network Decoding (1902.04149v3)

Published 11 Feb 2019 in cs.CV, cs.LG, and eess.IV

Abstract: In this paper, we propose a novel multimodal deep hashing neural decoder (MDHND) architecture, which integrates a deep hashing framework with a neural network decoder (NND) to create an effective multibiometric authentication system. The MDHND consists of two separate modules: a multimodal deep hashing (MDH) module, which is used for feature-level fusion and binarization of multiple biometrics, and a neural network decoder (NND) module, which is used to refine the intermediate binary codes generated by the MDH and compensate for the difference between enroLLMent and probe biometrics (variations in pose, illumination, etc.). Use of NND helps to improve the performance of the overall multimodal authentication system. The MDHND framework is trained in 3 steps using joint optimization of the two modules. In Step 1, the MDH parameters are trained and learned to generate a shared multimodal latent code; in Step 2, the latent codes from Step 1 are passed through a conventional error-correcting code (ECC) decoder to generate the ground truth to train a neural network decoder (NND); in Step 3, the NND decoder is trained using the ground truth from Step 2 and the MDH and NND are jointly optimized. Experimental results on a standard multimodal dataset demonstrate the superiority of our method relative to other current multimodal authentication systems

Citations (13)

Summary

We haven't generated a summary for this paper yet.