Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MISO: Mutual Information Loss with Stochastic Style Representations for Multimodal Image-to-Image Translation (1902.03938v1)

Published 11 Feb 2019 in cs.CV

Abstract: Unpaired multimodal image-to-image translation is a task of translating a given image in a source domain into diverse images in the target domain, overcoming the limitation of one-to-one mapping. Existing multimodal translation models are mainly based on the disentangled representations with an image reconstruction loss. We propose two approaches to improve multimodal translation quality. First, we use a content representation from the source domain conditioned on a style representation from the target domain. Second, rather than using a typical image reconstruction loss, we design MILO (Mutual Information LOss), a new stochastically-defined loss function based on information theory. This loss function directly reflects the interpretation of latent variables as a random variable. We show that our proposed model Mutual Information with StOchastic Style Representation(MISO) achieves state-of-the-art performance through extensive experiments on various real-world datasets.

Citations (16)

Summary

We haven't generated a summary for this paper yet.