Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The word problem of the Brin-Thompson group is coNP-complete (1902.03852v2)

Published 11 Feb 2019 in math.GR and cs.CC

Abstract: We prove that the word problem of the Brin-Thompson group nV over a finite generating set is coNP-complete for every n \ge 2. It is known that the groups nV are an infinite family of infinite, finitely presented, simple groups. We also prove that the word problem of the Thompson group V over a certain infinite set of generators, related to boolean circuits, is coNP-complete.

Citations (7)

Summary

We haven't generated a summary for this paper yet.