Solutions to a System of Equations for $C^m$ Functions (1902.03691v2)
Abstract: Fix $m\geq 0$, and let $A=\left( A_{ij}\left( x\right) \right) {1\leq i\leq N,1\leq j\leq M}$ be a matrix of semialgebraic functions on $\mathbb{R}{n}$ or on a compact subset $E \subset \mathbb{R}n$. Given $f=\left( f{1},\cdots ,f_{N}\right) \in C{\infty }\left( \mathbb{R}{n},\mathbb{R}{N}\right) $, we consider the following system of equations \begin{equation} \sum_{j=1}{M}A_{ij}\left( x\right) F_{j}\left( x\right) =f_{i}\left( x\right) \text{ }\left( i=1,\cdots ,N\right) \text{.} \end{equation} In this paper, we give algorithms for computing a finite list of linear partial differential operators such that $AF= f$ admits a $Cm(\mathbb{R}n, \mathbb{R}M)$ solution $F=(F_1,\cdots, F_M)$ if and only if $f=(f_1,\cdots, f_N)$ is annihilated by the linear partial differential operators.