Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Inference with Latent Variables in an Arbitrary Domain (1902.03099v3)

Published 28 Jan 2019 in cs.SI, cs.LG, and stat.ML

Abstract: We analyze the necessary and sufficient conditions for exact inference of a latent model. In latent models, each entity is associated with a latent variable following some probability distribution. The challenging question we try to solve is: can we perform exact inference without observing the latent variables, even without knowing what the domain of the latent variables is? We show that exact inference can be achieved using a semidefinite programming (SDP) approach without knowing either the latent variables or their domain. Our analysis predicts the experimental correctness of SDP with high accuracy, showing the suitability of our focus on the Karush-Kuhn-Tucker (KKT) conditions and the spectrum of a properly defined matrix. As a byproduct of our analysis, we also provide concentration inequalities with dependence on latent variables, both for bounded moment generating functions as well as for the spectra of matrices. To the best of our knowledge, these results are novel and could be useful for many other problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.