Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning from Hierarchical Critics

Published 8 Feb 2019 in cs.LG, cs.MA, and stat.ML | (1902.03079v4)

Abstract: In this study, we investigate the use of global information to speed up the learning process and increase the cumulative rewards of reinforcement learning (RL) in competition tasks. Within the actor-critic RL, we introduce multiple cooperative critics from two levels of the hierarchy and propose a reinforcement learning from hierarchical critics (RLHC) algorithm. In our approach, each agent receives value information from local and global critics regarding a competition task and accesses multiple cooperative critics in a top-down hierarchy. Thus, each agent not only receives low-level details but also considers coordination from higher levels, thereby obtaining global information to improve the training performance. Then, we test the proposed RLHC algorithm against the benchmark algorithm, proximal policy optimisation (PPO), for two experimental scenarios performed in a Unity environment consisting of tennis and soccer agents' competitions. The results showed that RLHC outperforms the benchmark on both competition tasks.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.