Papers
Topics
Authors
Recent
2000 character limit reached

Modelling Extremal Dependence for Operational Risk by a Bipartite Graph

Published 8 Feb 2019 in q-fin.RM | (1902.03041v1)

Abstract: We introduce a statistical model for operational losses based on heavy-tailed distributions and bipartite graphs, which captures the event type and business line structure of operational risk data. The model explicitly takes into account the Pareto tails of losses and the heterogeneous dependence structures between them. We then derive estimators for individual as well as aggregated tail risk, measured in terms of Value-at-Risk and Conditional-Tail-Expectation for very high confidence levels, and provide also an asymptotically full capital allocation method. Estimation methods for such tail risk measures and capital allocations are also proposed and tested on simulated data. Finally, by having access to real-world operational risk losses from the Italian banking system, we show that even with a small number of observations, the proposed estimation methods produce reliable estimates, and that quantifying dependence by means of the empirical network has a big impact on estimates at both individual and aggregate level, as well as for capital allocations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.