Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructive Non-Linear Polynomial Cryptanalysis of a Historical Block Cipher (1902.02748v1)

Published 7 Feb 2019 in cs.CR, math.AG, math.CO, math.GR, and math.RA

Abstract: One of the major open problems in symmetric cryptanalysis is to discover new specif i c types of invariant properties which can hold for a larger number of rounds of a block cipher. We have Generalised Linear Cryptanalysis (GLC) and Partitioning Cryptanalysis (PC). Due to double-exponential combinatorial explosion of the number of possible invariant properties systematic exploration is not possible and extremely few positive working examples of GLC are known. Our answer is to work with polynomial algebraic invariants which makes partitions more intelligible. We have developed a constructive algebraic approach which is about making sure that a certain combination of polynomial equations is zero. We work with an old block cipher from 1980s which has particularly large hardware complexity compared to modern ciphers e.g. AES. However all this complexity is not that useful if we are able to construct powerful non-linear invariants which work for any number of rounds. A key feature of our invariant attacks is that we are able to completely eliminate numerous state and key bits. We also construct invariants for the (presumably stronger) KT1 keys. Some of these lead to powerful ciphertext-only correlation attacks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.