Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sieve-SMM Estimator for Dynamic Models (1902.01456v4)

Published 4 Feb 2019 in econ.EM, math.ST, and stat.TH

Abstract: This paper proposes a Sieve Simulated Method of Moments (Sieve-SMM) estimator for the parameters and the distribution of the shocks in nonlinear dynamic models where the likelihood and the moments are not tractable. An important concern with SMM, which matches sample with simulated moments, is that a parametric distribution is required. However, economic quantities that depend on this distribution, such as welfare and asset-prices, can be sensitive to misspecification. The Sieve-SMM estimator addresses this issue by flexibly approximating the distribution of the shocks with a Gaussian and tails mixture sieve. The asymptotic framework provides consistency, rate of convergence and asymptotic normality results, extending existing results to a new framework with more general dynamics and latent variables. An application to asset pricing in a production economy shows a large decline in the estimates of relative risk-aversion, highlighting the empirical relevance of misspecification bias.

Summary

We haven't generated a summary for this paper yet.