Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tree-Sliced Variants of Wasserstein Distances (1902.00342v3)

Published 1 Feb 2019 in stat.ML and cs.LG

Abstract: Optimal transport (\OT) theory defines a powerful set of tools to compare probability distributions. \OT~suffers however from a few drawbacks, computational and statistical, which have encouraged the proposal of several regularized variants of OT in the recent literature, one of the most notable being the \textit{sliced} formulation, which exploits the closed-form formula between univariate distributions by projecting high-dimensional measures onto random lines. We consider in this work a more general family of ground metrics, namely \textit{tree metrics}, which also yield fast closed-form computations and negative definite, and of which the sliced-Wasserstein distance is a particular case (the tree is a chain). We propose the tree-sliced Wasserstein distance, computed by averaging the Wasserstein distance between these measures using random tree metrics, built adaptively in either low or high-dimensional spaces. Exploiting the negative definiteness of that distance, we also propose a positive definite kernel, and test it against other baselines on a few benchmark tasks.

Citations (76)

Summary

We haven't generated a summary for this paper yet.