Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Commuting conjugates of finite-order mapping classes (1901.11314v1)

Published 31 Jan 2019 in math.GT

Abstract: Let $\text{Mod}(S_g)$ be the mapping class group of the closed orientable surface $S_g$ of genus $g\geq 2$. In this paper, we derive necessary and sufficient conditions for two finite-order mapping classes to have commuting conjugates in $\text{Mod}(S_g)$. As an application of this result, we show that any finite-order mapping class, whose corresponding orbifold is not a sphere, has a conjugate that lifts under any finite-sheeted cover of $S_g$. Furthermore, we show that any torsion element in the centralizer of an irreducible finite order mapping class is of order at most $2$. We also obtain conditions for the primitivity of a finite-order mapping class. Finally, we describe a procedure for determining the explicit hyperbolic structures that realize two-generator finite abelian groups of $\text{Mod}(S_g)$ as isometry groups.

Summary

We haven't generated a summary for this paper yet.