Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Iris Segmentation and Localization Using Deep Multi-task Learning Framework (1901.11195v2)

Published 31 Jan 2019 in cs.CV

Abstract: Iris segmentation and localization in non-cooperative environment is challenging due to illumination variations, long distances, moving subjects and limited user cooperation, etc. Traditional methods often suffer from poor performance when confronted with iris images captured in these conditions. Recent studies have shown that deep learning methods could achieve impressive performance on iris segmentation task. In addition, as iris is defined as an annular region between pupil and sclera, geometric constraints could be imposed to help locating the iris more accurately and improve the segmentation results. In this paper, we propose a deep multi-task learning framework, named as IrisParseNet, to exploit the inherent correlations between pupil, iris and sclera to boost up the performance of iris segmentation and localization in a unified model. In particular, IrisParseNet firstly applies a Fully Convolutional Encoder-Decoder Attention Network to simultaneously estimate pupil center, iris segmentation mask and iris inner/outer boundary. Then, an effective post-processing method is adopted for iris inner/outer circle localization.To train and evaluate the proposed method, we manually label three challenging iris datasets, namely CASIA-Iris-Distance, UBIRIS.v2, and MICHE-I, which cover various types of noises. Extensive experiments are conducted on these newly annotated datasets, and results show that our method outperforms state-of-the-art methods on various benchmarks. All the ground-truth annotations, annotation codes and evaluation protocols are publicly available at https://github.com/xiamenwcy/IrisParseNet.

Citations (22)

Summary

We haven't generated a summary for this paper yet.